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TECHNICAL MEMORANDUM 

CELESTIAL TARGET OBSERVABILITY FOR 
ASTRO SPACELAB MISSIONS 

I.  INTRODUCTION 

When planning an observing schedule for conducting an astronomical mission 
from orbit, one of the first pieces of data required is the observing time available 
for targets at various locations on the celestial sphere. Instead of just putting a 
target "in the hopper" and letting it "flow through the mission planning cycle," it 
would be useful to know in advance what to expect in the way of observation time 
for that target based on its position relative to the orbit plane. 
especially pertinent if one were trying to substitute a new target during real time 
replanning. Information of this nature would allow the Principal Investigator (PI) or  
the mission planner to determine the region of the celestial sphere from which it 
would be most desirable to select targets and those regions to avoid selecting targets 
from in order to obtain a more optimum observing schedule for a given orbit (or 
mission). 

This would be 

It is precisely this question which will be addressed in this report. 

11. OVERVIEW 

Observational data can be generated by uniformly distributing targets on a 
meridian plane in declination from -90° to +90° and varying the position of the orbit 
plane with respect to those targets. 
measured by the difference between the right ascension of the target, a ,  and the 
right ascension of the ascending node of the orbit plane, 52;  i .e.,  by the quantity 
( a - 0 ) .  The acquisition and loss t i m e s  of these targets can be calculated and pre- 
sented in the form of graphs. 
targets, are presented in Figures 1A through 1D and 2A through 2D. 
chosen has an inclination of 28.O5, right ascension of the ascending node of Oo and an 
orbital period of about 1 hr  31 min (ALT 350 km). (These orbital parameters are 
representative of the ASTRO-1 mission.) 
plane of a = Oo such that a-52 = Oo for that figure. The targets in Figures 1B, 1C , 
and 1D are at a = 90°, 180°, and 270°, respectively. The declinations of the targets 
range from -90° to +90° on each figure. 
one set corresponding to the start of the mission observations at MET = 24 h r ,  and 
the second set to the end of the mission at 192 hr  MET. This allows one to observe 
the relative movement of the On/Off times with the passage of time (Mission Elapsed 
Time). The reference time of these plots is at an ascending node. 
charts one can then see the on and off time relative to an ascending node or relative 
to a rev start time. 
ascending node) with mission elapsed time reflects the effects of the movement of the 
orbit plane relative to inertial space (regression of the nodes). 
the effect is not uniform over all declinations. 

In this report, this variation of position will  be 

These, for a generic orbit and a generic set of 
The orbit 

The targets in Figure 1A are lying in a 

There are two sets of curves on each figure: 

From these 

The shifting of the target's acq/loss positions (relative to the 

It can be seen that 

Starting with Figure 1A where the targets have the same right ascension as 
that of the ascending node of the orbit plane (a-$2 = Oo) , one sees that the acquisi- 
tion of the target occurs prior to the ascending node of the orbit and those at 
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negative declinations are acquired earlier than those at positive declinations. 
shifts to Figure lB, 1C and 1D where a-R increases to goo, 180°, and 270°, respec- 
tively, one sees that the targets are acquired progressively later in the orbit. 
a-R = 180° the situation regarding the relative acquisitions of targets is reversed from 
that of a-R = Oo. 
those at negative declinations. 

A s  one 

At  

Here the targets at positive declination are acquired earlier than 

One can observe from Figure 1A that, with the exception of targets directly 
above the Earth's poles, all target acquisition times at the end of the mission are 
shifted forward in time relative to that target's acquisition time at the start of the 
mission. 

The time shifts for targets at high (absolute) declinations are smaller than those 
for targets near the equator. 
appear to depend much on the target declination. 

The absolute lengths of the observing times do not 

Going on to Figure lI3 , where a-R = 90°, one observes that targets near the 
equator and at high positive declination exhibit the same general sort of behavior as 
that observed in Figure 1A. However, as one gets to high negative declinations, one 
observes some unusual o r  different behavior. (The same thing can be seen in Figure 
1D where a-R = 270° for targets of high positive declination.) 
target at a - 6 O O  declination has a much shorter observing time than the other targets 
and the targets below - 6 3 O  declination are shifted backward in the orbit plane with 
the passage of time rather than forward as has been the case for all other targets so 
far discussed. This same behavior can be observed in Figure 1D for targets above 
+ 6 3 O  declination. This phenomenon will be explained in detail later. It will be seen 
to be due to the fact that the targets are near the orbit poles. 

In Figure lB, the 

Figures 2A through 2D are presented by the same scheme as that used for the 
first set of figures, but here the purpose is to show the effect of a launch delay. 
In Figure 2A one can see that the acq/loss times for a launch delay are shifted 
backward (earlier) in time relative to the nominal launch. 
causes the right ascension of the ascending node of the orbit plane to increase by 
15O (due to the eastward rotation of the Earth). This is why the acq/loss times 
occur earlier for launch delays; i.e.,  the orbit plane, in effect, is rotating 
into the target (rotating in the same direction as the orbital motion enabling the 
spacecraft to get to  the target at a fixed point sooner). 

Each hour of launch delay 

Note again in Figure 2B the atypical behavior at large negative declinations for 

It is also noteworthy that as one approaches 
a-R = 90° (near the orbit pole) and in Figure 2D at large positive declinations for 
a- R = 270° (near the other orbit pole). 
the orbit poles, the shift in the acq/loss times of the targets becomes quite large. 
In this case (2 hr delay), as an example, the target at -50° declination with a-R = 90°, 
the shift is approaching 50 percent of the length of the total observation time which 
is quite significant for replanning efforts in the event of a launch delay. 

Without dwelling at length on all of the little nuances that might be observed 
from these charts, we summarize some of the major points and then pass on to the 
analysis : 

0 All target acq/loss times are shifted forward in the orbit plane (relative to 
the node), i.e., occur later with the passage of time except those near the 
orbit poles. 

10 
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0 All target acq/loss times occur earlier with launch delays except those near 
the orbit poles. 

0 The magnitude of the shifts due to either the passage of mission time or to 
launch delays is dependent on the target's position with respect to the orbit 
plane. 

0 Although not shown by these figures, it will be shown in the analysis to 
follow that the length of the observation time is  highly dependent on the 
target's "B-angle" and on the elevation angle above which one is constrained 
to view the target. 

In the following sections, an analytical discussion of these effects will  be given 
which will  provide some insight into their behavior. 

111. CALCULATING BASIC OBSERVABILITY OF A 
CELESTIAL TARGET 

The amount of time that an astronomical object (e.g. ,  a star) can be observed 
from a spacecraft in orbit about the Earth depends on the lpcation of that object 
relative to the orbit plane of the spacecraft and on the constraints placed on the 
observation; e.g., how far from the Earth's limb it must be at the time of observa- 
tion. T h e  location of the astronomical object relative to the orbit plane is measured 
by two angles. 
object is located. 
angular distance from the ascending node of the orbit plane to the projection of the 
object's position vector onto the orbit plane. 
object's position vector onto the orbit plane is the culmination point of the object 
which is the place in the orbit plane where the object attains its minimum zenith angle 
or maximum elevation angle. The  angle measured in the orbit plane from its ascending 
node to this culmination point is called the argument-of-latitude of culmination of that 
object, denoted by uc. 

The first angle is a measure of how far out of the orbit plane the 
This is called its beta ( 6 )  angle. The second angle is the 

The location of the projection of the 

These angles, 6 and uc , can be calculated from a knowledge of the orbit plane's 
orientation with respect to the standard inertial coordinate system (X-axis to the 
vernal equinox and Z-axis to the North Pole as shown in Fig. 3) and the star's posi- 
tion with respect to this system. The orientation of the orbit plane is measured by 
its inclination, i ,  with respect to the equatorial plane and the right ascension of the 
ascending node, a ,  measured relative to the vernal equinox. The star's coordinates 
are right ascension, a, and declination, 6 .  All of these angles are illustrated in 
Figure 3 .  

A 

By knowing the unit orbital angular momentum Tector ( J )  of the orbit (the 
orbit pole) and the unit position vector to the s ta r ,  R ,  one can calculate the @-angle 
as 

A 

(1) 
A 

R J = cos (90-6 )  = sin B . 
A h 

Substituting the appropriate expressions into R and J gives 

11 



Figure 3 .  Illustration of the 6-angle and argument-of-latitude 
of culmination of a star. 
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sin 6 = cos i sin 6 - cos 6 sin i sin ( a  - Q) . ( 2 )  

This is the first of the two angles which measures the location of the object relative 
to the orbit plane. 

n 

By defining unit vectors to the ground terminator of the star,  RGT, the cul- 
n h 

mination position of the star,  RC, and the ascending node, P ,  as illustrated by 
Figure 3 ,  one can calculate the second of the two angles, uc , as, 

n ,. 
k c * @  , ( 3) + 900) = -sin uc - - R G T  P also, cos uc = C cos (u  

which, on substituting in the appropriate expressions for the vectors , gives 

[sin i sin 6 + cos i cos 6 sin ( a - a ) ]  tan uc = cos 6 cos ( a  - Q) ( 4 )  

These equations are derived in detail in  Appendix A.  

The constraint on observing an object is usually measured by its zenith angle, 
the angle that the object's position vector makes with respect to the local vertical or 
else the complement of this angle, the orbital elevation angle (OEA) , the angle w$ich 
the object's position vector makes with respect to the local horizontal plane. If RV 
is the unit position vector of the orkiting vehicle, then the orbital elevation angle, 
OEA, of a star with position vector R is 

,. n 

RV R = cos (90 - OEA) = sin OEA , (5) 

from which, with a little manipulation, one can calculate 

sin OEA = cos (3 cos (uc - u) , ( 6 )  

where u is the current or instantaneous argument of latitude of the vehicle. Equa- 
tion (6 )  yields a continuously varying OEA as u is varied by the vehicle traveling 
around the orbit plane. Conversely, OEA can be viewed as a constraint angle above 
which one wishes to observe the target star. 

One can, with that view, invert equation (6)  to calculate the arguments-of- 
latitude of acquisition and loss (u  and uL) of the target star above the given OEA as A 

- -1 sin OEA - 
U A , L  - uc + cos [ cos 6 1  ' (7) 

13 



The acquisition and loss positions are symmetrically placed on either side of the cul- 
mination of the target star. 

divided by the - UA The length of observation of a target star is given by uL 
vehicle's rate of travel in the orbit plane (its mean motion, n) and is given by 

OT = 2 cos 

where n = 7 p /a (11 is the Earth's gravitational constant and a is the mean semi- 
major axis of the orbit). 

From these basic equations one can deduce practically all information about the 
possible observation times of objects at various locations relative to the orbit plane. 
These equations will be analyzed on the following pages. 

Before proceeding, it wil l  be beneficial to point out an important behavioral 
characteristic of the angles 13 and uc. Looking at the equations defining them, equa- 

tions ( 2 )  and ( 4 ) ,  it is seen that they are dependent on the target star's coordinates 
a ,  6 ,  and the orbit plane's orientation angles i and R .  The angles a ,  6 ,  and i are 
all constant and R changes only slowly with time (on the order of 5O/day) so that 8 
and uc,  while not constant, change only very slowly with time. Due to this very 
slow variation, they can, with little loss of accuracy, be considered constant over one 
orbit while using equation (7 )  to compute the acquisition and loss of a target. 

A plot of the 8-angle of stellar targets with varying declination and parameter- 
ized orbit plane placement (a-R) for an orbit with fixed inclination, i ,  is shown in 
Figure 4.  For the orbit plane orientations a-R = 270° and 90°, the corresponding 
f3-angles, as given by equation ( 2 ) ,  are 6 + i  and 6-i, respectively; thus,  in the first 
instance, where 6 = 90°-i the 8-angle becomes 90° and in the second instance 
where 6 = i - 90° the @-angle becomes - 9 O O .  The upper and lower curves in Figure 
4 coresponding to a-sl = 270° and 90°, respectively, provide an envelope within which 
all 8-angle curves must fall. 

The 6-angle of a target determines the length of time that the target can be 
observed as can be seen from equation (8) .  It also can be observed from equation 
(8)  that the cosine of the observation time for a given target is inversely propor- 
tional to the cosine of the 8-angle for that target; consequently, when the 8-angle 
of a target gets large its observation time gets small for positive OEAs. 
if 8 > (90° - OEA) there is no observation time for that target. 

In fact, 

The line of sight to a celestial target for an observer on the surface of the 
Earth is occulted by the Earth for negative elevation angles. 
objects can be observed with negative elevation angles. 
observation time of a target gets large for large 8-angles. 
tinuous observation of a target if 8 > 900 - IOEA I for negative OEAs. 

From orbit, however, 
For negative OEAs,  the 

In fact, one gets con- 

The observation time for a celestial target as a fraction of the orbital period is 
In summary, if shown in Figure 5 as  a function of 8-angle with OEA parameterized. 

I 8 I > 90° - IOEA I there is no observation time for positive OEA constraint values and 

14 
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Figure 5. Target observation time as a function of beta angle 
(orbital elevation angle constraint as a parameter). 

90 

16 



continuous observation time for negative OEA constraint values. For a constraint 
OEA of 00 one can observe the target for exactly 1 / 2  of the orbit for all 6-angles 
except ?90° which are singularities, cos ( O / O ) .  These are cases where the target 
sits always on the horizon of the plane defined by OEA = Oo, never rising and never 
setting. 

-1 

The amount of observation time per orbit can also be presented as a function 
of the OEA constraint above which it is desired to view the target with the 6-angle 
of the target parameterized. 
Although constraint OEAs are shown to -90° in this plot for completeness, it is not 
physically possible to observe targets with OEAs below - 1 5 O  or  -20° depending on the 
altitude of the orbit because of occultation of the target by the Earth. 

The plot of the data in this form is shown in Figure 6. 

The location in the orbit plane where a target is visible depends on where the cul- 
mination of that target occurs in the orbit plane. The argument-of-latitude of culmination 
of a target with coordinates (a, 6 ) in an orbit plane with inclination i and right ascension 
of the ascending node R is given by equation ( 4 ) .  Plots of this angle for targets of vary- 
ing declination 6 are shown in Figure 7 for a fixed orbital inclination i and with the orbit 
plane orientation with respect to the target ( a - Q )  parameterized. 
loss of a target is symmetrically placed on either side of culmination and these values 
depend on the constraint OEA above which it is desired to view the target; for example, 
for OEA = Oo the acquisition is 90° prior to uc and the loss is 90° following uc. 

If one knows the orbit plane orientation with respect to a target (a-Q) and the 
target declination, 6 ,  then one can tell quickly from this chart where in the orbit 
plane that target will be visible; for example, if a - R  = 60°, a target at 30° declination 
would have a uc at about 6 4 O .  For a constraint OEA of Oo it would become visible at 

Thus, its 
acq/loss would straddle the ascending node of the orbit, or the acquisition would 
occur on one orbit and the loss on the following orbit. 

The acquisition and 

= 640-90° = -26O = 334O and would be lost at uL = 640+90° = 154O. UA 

This same information is presented in a different form in Figure 8. 
is presented as a function ( a - Q )  with declina- 

There the 

Both of these figures are for an orbit with an 
argument -of-latitude of culmination, uc 
tion of the target, 6 ,  parameterized. 
inclination of 28.5O which results from a due east launch from Cape Kennedy. 

Either one of these figures ( 7  or 8) shows how one can get some very large 
changes in the acquisition and loss time of a target with only a very s m a l l  change in 
a target's position with respect to the orbit plane [ (  a-R) and 6 1. A s  an example of 
this, consider a target at 60° declination with (a-R) = 260O. Figure 8 shows the uc 
to be about 2 1 0 O .  

about 340O. 
a acq/loss shift in time of about 33 minutes or about 1 /3  of an orbit. On the other 
hand, for a target at a slightly higher declination, say about 6 5 O ,  for ( a - Q )  = 260° 
its uc would be about 140° and if ( a - Q )  was increased to about 280° its uc would 
dramatically decrease to about 4OoY or a decrease of looo in the orbit plane. Thus, 
two targets separated by only 5O in declination would experience extreme and opposite 
shifts in acq/loss times with only a relatively s m a l l  change in the orbit plane orienta- 
tion. 
than the orbit pole and the other is lower. The B-angle for either target, by Figure 

If (a-Q) is increased to 280°, the uc dramatically increases to 
This is an increase of 130° in the orbit plane which would correspond to 

The basic reason for this is that one of the targets is higher in declination 

17 
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Figure 8. Argument of latitude of target culmination as a function of the 
difference between right ascension of target and right ascension of 

ascending node of orbit plane (target declination as parameter). 
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4 ,  would be quite large, approaching 90°, and the observation time for either target 
by Figure 5 would be large for negative constraint OEA or sma l l  for positive con- 
straint OEA. 

For orbital parameters representative of the ASTRO-1 mission (i.e. , i = 28.O5, 
ALT = 350 km) and a constraint orbital elevation angle of 1 . O 2 3 ,  Figure 9 presents 
the times of acquisition and loss as measured from the ascending node of an orbit 
(any orbit) for targets of varying declination and parametric values of ( ~ $ 2 ) .  
9A shows (a-Q) parameterized from Oo to 180° in increments of 30° and Figure 9B 
shows ( a - n )  parameterized from 180° to 360° in increments of 30°. This data was 
presented on two figures to keep one from becoming too cluttered to read conveniently. 
The constraint OEA of 1 O . 2 3  resulted from the PI request to keep the line-of-sight to 
a target star at least 20° from the limb of the Earth combined with the limb of the 
Earth being about 18.O77 below the local horizontal from a 350 k m  orbit. 

Figure 

The acquisition and loss time, relative to an ascending node, for any target 
anywhere on the celestial sphere can be read fairly accurately from these plots, cer- 
tainly well enough to do preliminary mission planning. 
targets lying on the meridian plane defined by a-fi = 90°. 
all positive declinations and for negative declinations down to nearly - 6 O O  are acquired 
near the ascending node (0:OO time). For targets just below - 6 O O  declination (the 
orbit south pole) there is no acq/loss time because of the positive OEA constraint 
value of 1 . O 2 3 .  Targets within 1.O23 of the pole (-61.05 A 1 . O 2 3 )  cannot be observed. 
Those at declinations more negative than about -63O are then acquired at the descend- 
ing node of the orbit and lost at the following ascending node. 
that one of these targets can be observed is nearly 1 / 2  an orbital period except for 
those very near the orbital south pole. 
the data presented in Figure 5. One can likewise tell very accurately from these 
charts the acquisition and loss time of any target on the celestial sphere for any 
orbit relative to its ascending node. 

Consider, as an example, 
Targets in this plane at 

The length of time 

This is precisely what one would expect from 

IV. SHIFT I N  OBSERVABILITY WITH LAUNCH DELAY 

A shift in the launch time of a mission, either earlier or later, will result in a 
shift (earlier or later) in the mission elapsed time (MET) at which a fixed object 
(star) can be observed from orbit. 
orbit plane to be placed differently with respect to the "sky" (or the inertial coor- 
dinate system). 

This is because a shift in launch time causes the 

The shift in the acquisition and loss MET of a target due to a change in launch 
time is reflected by the change in the position of the culmination point of the target. 
The position of the culmination point was discussed in Section I11 and shown graphic- 
ally in Figures 7 and 8. A launch delay caused the right ascension of the ascending 
node, fi , to increase at a rate of 15O/hr; thus,  the quantity of ( a-n)  decreases at 
15O/hr. This is shown by the bottom part of Figure 10. Figure 11 shows the change 
in (a-fi) as a function of launch delay for several starting values of (a-a). 
example, if originally a-Q = 60° and one had a 2 h r  launch delay, the new a-fi would 
be 30°. A s  can be seen from Figure 8 ,  a target at 30° declination with these ( a - n )  condi- 
tions would originally have a uc of about 6 4 O .  With the 2 h r  launch delay, uc would 
decrease to about 40°. This would be a decrease of 2 4 O .  For an orbit mean motion 

For 
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Figure 10. Effects of launch delay and nodal regression on angular 
difference between right ascension of target and right 

ascension of ascending node of orbit plane. 



Figure 11. Effect of launch delay on target and orbit plane ascending node 
right ascension difference angle for various 

assumed initial values. 
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of 4O/min this would cause the acq/loss times of that target to occur 2 4 / 4  = 6 min 
earlier than for the nominal case. One can also see that shifts like this in many 
instances can cause the uc to cross the value of Oo or  be shifted into a previous 
orbit. The STAR computer program, which is used extensively by MSFC in mission 
planning work for astronomy missions, computes the acq/loss times in a given orbit 
based on which orbit the uc falls in. Thus, one can sometimes see an acq/loss 
On/Off bar show a dramatic shift of one orbital period with a slight delay in launch 
time due to this phenomenon. This is not a basic or fundamental discontinuity; it is 
simply an artifact of the "bookkeeping" methods used within the computer program. 
This "jumping" is only apparent when one orbit of acq/loss data is computed in 
isolation. If many orbits are computed and shown consecutively, it is not seen. 

The shift in the position of culmination as a function of change in launch time 
demonstrated by previous discussion and illustrated by Figure 7 and Figure 8 can be 
calculated from the equation 

ALT , (9)  - 
A U C - a L T  

where uc is defined by equation ( 4 ) .  The orbital inclination i and the target coor- 
dinates a and 6 remain constant with respect to change in LT and only n, the right 
ascension of the ascending node of the orbit plane is affected. I ts  rate of change is 

= the rotational rate of the earth] . a n  - * 
we 

- -  a LT e 

By direct differentiation it can be shown that 

- w  (cos &/cos2 6) * [cos i cos 6 + sin i sin 6 sin ( a - n ) ]  , (10) aUc - - -  a LT e 

and it can be further shown that the quantity in brackets is [cos f3 ( a  f3 /a  6 ) ]  where 
f3 is defined by equation ( 2 ) .  Thus, one can write 

The direction of the shift in the observation time of a target with a delay in launch 
time then depends on the sign of the partial derivative, auC/aLT. 

Furthermore, if one considers targets with a constant right ascension but with 
changing declinations, the shift in launch time of the targets with changing declina- 
tion depends on the sign of the partial derivative a f3 / a  6 . The shift in launch time 
can be positive for some values of 6 and negative for others. 
illustrated earlier during a discussion of the results shown in Figure 8. The cross- 
over point where the shift goes from positive to negative is where a f 3 / a  6 = 0. 

This has already been 
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The zero point for this partial will  occur at a declination given by differentiating the 
expression for and setting it to zero. 

cos fi (s) = cos i cos 6 + sin i sin 6 sin ( a - n )  = 0 ( 1 2 )  

or where 

The plot of the values of 6 which satisfy this as a function of (a-Q) is shown 
in Figure 12.  

Because auC/aLT has the opposite sign of a B / a  6 , then a uC/aLT will be nega- 
tive in the clear area of Figure 12. 
to a decrease in the acquisition time of a target, or it is acquired at an earlier MET. 
In the cross hatched regions of Figure 1 2 ,  an increase in launch time leads to an 
increase in acquisition time of a target o r  it is acquired at a later MET than the 
nominal acquisition time. Figure 1 2  defines regions on the celestial sphere which are 
depicted on the diagram shown on Figure 13. 

In that region an increase in launch time leads 

The shifts in the acquisition and loss METs of targets with a delay in launch 
time can be illustrated by the pair of diagrams in Figure 14.  In the first diagram 
we consider two targets, each with right ascension 270° greater than that of the 
ascending node of the orbit plane. One of the targets, T1, has a declination less 
than that of the orbital angular momentum vector J ;  i .e.,  less than 90°-i, while the 
second target , !k2, has a declination greater than that of f , i.e. , it lies in the cross 
hatched area of the celestial sphere shown in Figure413. The culmination point of the 9, 
lies at an argument-of-latitude of 270° while that of T2 lies at an argument-of-latitude 
of 900. 

h 

If one calculates the acquisition and loss times of these particular targets for an 
orbital elevation angle of O o ,  then T1 is acquired at the descending node of the orbit 
plane and lost at the ascending node of the orbit plane, 
visible during the entire southern hemisphere pass of the orbit. 
exactly opposite. 
occur at the descending node. 
phere pass of the orbit. 

In other words, it will  be 
Target T2 will be 

Its acquisition wil l  occur at the ascending node and its loss will 
It wil l  be visible during the entire northern hemis- 

The second figure in the pair shows the orbit plane relative to these same two 
targets after a launch delay of about an hour where the right ascension of the 
ascending node of the orbit plane has increased about 15O over that which it had in 
the first figure. 
plane 

In this case, the culmination of ?1 [which occurs in the orbit 
where the target's position vector is projected onto the orbit plane by a great 
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Figure 13. Location on the celestial sphere of regions defined in Figure 12. 
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A A 

circle containing T 
acquisition and loss points which lie at 90° to either side of culmination occur at 
points prior to the descending and ascending nodes, respectively. 
in this orbit plane would get to these points quicker (at an earlier MET) than it would 

and J] occurs at an argument of latitude of less than 2 7 0 O .  The 

A vehicle moving 

1 

have in the case shown by the first figure. 
shifted earlier than the nominal times by a delay in launch time. 

Thus, the acq/loss times for T1 are 

A 

The culmination of T2 now occurs at an argument-of-latitude greater than 90°. 
A 

The acquisition anld loss points of T 2  now occur at points after the ascending and 
descending nodes, respectively. 
these points later (at a later MET) 

A vehicle moving in this orbit plane would get to 
than it would have in the case shown in the first 

figure. 
later than those of the nominal launch time. 

Thus, a delay in launch t i m e  causes the acq/loss times of T2 to be shifted 

This geometrical picture confirms and gives insight into the earlier mathematical 
results . 

V. SHIFT I N  OBSERVABILITY WITH MISSION ELAPSED TIME 

The relative position in the orbit plane where a celestial target is acquired and 
lost (uA,  uL) gradually changes as the mission progresses. This is because the orbit 
plane slowly changes its position with respect to the celestial sphere; i.e.,  its line of 
nodes regresses due to the oblateness of the Earth. This regression rate is given by 

2 b = - 3 / 2  J2 (re/ao) no cos i 

where no = 

the Earth (re = 6378160 m )  . Note that h is a function of cos i and therefore goes to 
zero for polar orbits. 
inclined orbit to about 4.O5/day for a 57O inclined orbit for low altitude orbits ( ~ 3 0 0  
km alt .) . 
launch delay but of smaller magnitude and in the opposite direction. A launch delay 
of 1 hr  for example increases the right ascension of the ascending node by 1 5 O  over 
what it would have been for a launch on time, while an elapsed time of one day in 
orbit causes the right ascension of the node to decrease between 4 . O 5  and 7.O5 
depending on the inclination and, to a lesser degree, the altitude. 

the mean motion, p = 3.986012 x 1014 m 3 / s 3  and J2 = 1.0827 x 
a. is the mean semi-major axis of the orbit and re is the equatorial radius of 

This regression rate varies from about 7.5O per day for a 28O.5 

This phenomenon produces an effect qualitatively the same as that of a 

The change in (a-Q) due to nodal regression for a 28.O5 inclined orbit is shown 
in the top half of Figure 10. 
function of rev number or  mission elapsed time for several starting or initial values 
of (a-0). 
of a-Q at any point in a mission with any given starting value of (a-Q). One can 
then turn to the charts in Figures 9A o r  9B to determine the acq/loss time of any 
target (relative to an ascending node) at any time point in the mission. 

Figure 1 5  shows some actual values of (a-Q) as a 

One could use this chart with a little interpolation to determine the value 
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The acquisition and loss times of a target at a fixed place on the sky changes 
at a uniform rate with mission elapsed time due to the constant nodal regression rate 
(for a fixed orbit). A s  the position of the target is varied, however, the change in 
acquisition and loss times do not vary at a uniform rate w i t h  target position variation. 
Figures 7 and 8 showed the position of uc (and consequently acquisition and loss 
times) as a function of ( ~ $ 2 )  and target declination. 
rapidly this wil l  change with variation of target position. 
of culmination (and consequently, acquisition and loss positions) with the passage of 
time can be calculated from the expression 

We will now calculate how 
The shift in the position 

A t  . (15) - a uC AuC - at 

Using equation ( 4 )  for uc ,  one can get by direct differentiation and some simplifica- 
tion that 

a uC ' cos 6 a f3 - =-Q- - 
a t  COS B a 6  

This has exactly the same form as a uc/a LT except that a / a L T  = we encountered 
in the former case, is here replaced by 
tion (14)  for h and explicitly writing out 3 $/a 6 gives 

given by equation (14).  Substituting equa- 

'Os ' 
cos $ 

[cos i cos 6 + sin i sin 6 sin (a-a)] (17) (Lj n cos i 2 
a uC 
at  - = 312 J 

0 a. 

or  

[cos i cos 6 + sin i sin 6 sin ( a - a ) ]  . a uC * cos 6 

cos2 B 
- = -  $2 
at 

Because h ,  by equation (14) ,  is always negative, the coefficient of a $ / a  6 in 
equation (16) will  be positive for all 6 and all 6; therefore, a uc / a t wil l  have the 
same sign as a $ / a  6 . 
where it is positive. 
for positive and negative shifts in acq/loss t i m e s  w i t h  the passage of time. 

The plot in Figure 1 2  shows where this partial is negative and 
Figure 13 then shows where targets lie on the celestial sphere 

Figure 16 shows a plot for equation (17) with 6 as the independent variable, 
~ $ 2  parameterized, and i fixed at 2 8 . O 5 .  
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One can see from Figure 16 that for targets lying on the meridian plane defined 
by a-52 = 90° there is a singularity at 6 = -61.O5, the orbit south pole. For targets 
on this meridian plane lying at declination less negative than that of the orbit south 
pole Gc is positive, indicating that these target acq/loss t i m e s  shift forward in t i m e  
or are acquired relatively later each revolution as time passes while targets with 
declinations more negative than that of the orbit south pole will shift backward or  be 
acquired relatively earlier each revolution as time passes. 

Four degrees of shift in the position of orbital noon translates into about 1 min 
of time shift in the acquisition and loss of a target; thus one can also use Figure 16 
to estimate the time shift in the acq/loss of a target with elapsed time in the mission 
and also how rapidly it will change (and in what direction) with target position 
variation. 

VI. SUN AND MOON INTERFERENCE 

Celestial targets cannot be observed at will  because of interference from 
extraneous objects in the line-of- sight (or near it) between the observing telescope 
and the observed objects. 
which has been discussed in the entirety of this report thus far. There are other 
sources of interference however. The major ones are the Sun and the Moon which 
will be discussed briefly. (Trapped radiation about the Earth represents a different 
type of interference for some instruments, and will  not be discussed in this report.) 

The Earth itself, i s ,  of course, the major interfering body 

The Sun and/or the Moon represent an obstacle to viewing a celestial target 
The only if  they come too close in position to that object on the celestial sphere. 

Sun moves in the ecliptic plane. 
because of the apparent yearly motion of the Sun through the sky; i .e. ,  for any 
given target there will be only a certain time of year (and the same time every year) 
when the Sun would interfere wi th  observing it.  
a given interference half-cone angle for any given target. 

This interference would be on an annual basis 

This can be easily calculated from 

The angle between the Sun and target star is given by 

From spherical trigonometry and Figure 17 we can write 

cos L, = cos a. cos 6 
0 

sin 6, = sin E: sin L 
0 
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Figure 17. Illustration of Sun in ecliptic plane an angle (#J 

of star to be observed out of ecliptic plane. 



Where Lo is the mean longitude of the Sun in the ecliptic plane, which to a rough 
approximation is ,  

Lo = L (t-to) 

w i t h  to = March 2 1  and L = 0.9856O/day. Expanding the equation for 0 as 

cos o = cos a* cos 6 * [cos a0 cos 6 

+ sin 6, [sin 6 J  

+ sin a* cos 6 * [sin a cos 6@1 
0 

, 

and substituting the above spherical trigonometry expressions for the quantities in 
the first and second brackets, 

cos 0 = cos a* cos 6, [cos Lo] + sin a* cos 6, [ 'L6:] + sin 6, [sin 601 . 

Factoring sin 6 0  from the last two terms and substituting sin E sin Lo for it and 

simplifying we get 

cos 0 = (cos a* cos 6 *) cos L + (sin a* cos 6 * cos E + sin 6 * sin E) sin L 
0 0 '  

(19) 

Since O is a constraint angle (constant), this equation has the form 

a cos L + b sin Lo = c 
0 

w i t h  solution 

L + =  tan-1 (k) t cos-1 ( ) rn 0 

Since Lo 2, L ( t - to) ,  the time interval when the constraint is satisfied is given by,  

t, = to + [ y 
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A s  an example: Let 

a* = 900 

6, = 23.O5 

E = 23.O5 

0 = 30° 

Then 

L, = 90° t 30° 

L- = 60° 

L+ = 1200 

I March 2 1  + 6 1  days z May 2 1  6 Oo 
0.9856O /day t- = March 2 1  + 

-2 March 21 + 122 days E July 21  . 1200 
0.9856OIday t+ = March 21 + 

Thus, a target at ( a , & )  = (goo,  23.O5) with a constraint angle of 30° from the Sun 
could not be viewed from about May 2 1  to July 2 1  on any year. 
of course, obvious from inspection. 

ference angle 0 then the Sun will never interfere with the observation of the target 
star. 
in Figure 17 and can be calculated from 

This example is, 

If the target star is out of the ecliptic plane by more than the half-cone inter- 

The distance I$ that the target star is out of the ecliptic plane is illustrated 

= cos E sin 6 *  - sin a* cos 6, sin E . ( 2 2 )  

If I $I I > 0 There will never by any interference from the Sun and in this case equa- 
tion (20)  would have no solutions. 
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Figure 18 shows the position of the Sun or tile celestial sphere on the first day 
of each month for a whole year with a 45O constraint angle (half-cone angle) about 
each position which is the specified solar avoidance angle for ASTRO-1. This posi- 
tion marked 1 is for January 1, the position marked 2 is for February 1, and so on 
for each month of the year. 
accurately f r o m  this chart where the Sun is and what the avoidance region for that 
time of year will  be. 

For any given time of the year, then, one can tell fairly 

Interference from the Moon is a much more difficult case to give a simple 
approximate equation for because of the complexity of the moon's motion. 
plane is inclined at about 5.O1 to the ecliptic plane. The right ascension of its 
ascending node oscillates between about t13O about the vernal equinox with a period 
of about 18 years. If there 
is interference from the Moon it will occur on a monthly basis rather than an annual 
basis as w i t h  the Sun. 
"new Moon" so that the Sun and Moon are in the same part of the sky and give only 
one area of interference. This has the additional benefit of giving dark night skies 
for observations. 

I ts  orbit 

Its sidereal period about the Earth is about 27.3  days. 

The usual practice in mission planning is to launch near 

Figure 19 shows the position of the Moon on the celestial sphere over a period 
The of about one month with the position of the Moon shown at three day intervals. 

lunar positions shown on this Figure were generated for early 1989. 
marked 1 (near Oo right ascension and Oo declination) is for January 13,  1989; the 
position marked 2 is for January 16,  1989; 3 is for January 19,  1989, and so on. 
The final position marked 10 is for February 9 ,  1989. The large circle around each 
lunar position is a 45O lunar avoidance area for night-time target scheduling and the 
s m a l l  circle is a Z O O  lunar avoidance area for day-time target scheduling. 
ment of the moon relative to inertial space repeats itself every 27.321 days. 
example, the Moon has Oo right ascension on January 12,  1989 at about 22 .2  hrs GMT; 
then 27.321 days later on February 9 ,  1989, at about 6 . 0  hrs  GMT the Moop is again 
at Oo right ascension and so on. By continually adding 27.321 days to the previous 
date one can get approximate times every month for the PIoonfs starting position on 
the chart. Continuing this indefinitely wi l l  gradually lead to sizeable errors, but for 
the years 1989 and 1990 the following table gives the approximate times when the 
moon will be at Oo right ascension. 

The position 

This move- 
For 
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Day 

Jan. 12 

Feb. 9 

Mar. 8 

A p r .  5 

May 2 

May 29 

June 26 

July 23 

Aug .  19 

Sept. 16 

O c t .  13 

Nov. 10 

Dec. 7 

Approximate Da tes  in 1989 and 1990 when the 
Moon will be at Oo R i g h t  Ascens ion  

1989 

Hour (GMT) 

22.2 

6.0 

16.7 

3.5 

14.0 

22.0 

3.5 

9.0 

16.6 

2.5 

13.0 

0.0 

8 .3  

40 

- 

D a y  

Jan. 3 

Jan. 30 

Feb. 27 

Mar. 26 

A p r .  22 

May 20 

June 16 

July 13 

A u g .  10 

Sept. 6 

O c t .  3 

O c t .  31 

Nov. 27 

1990 - 
Hour (GMT) 

13.7 

19.4 

3.0 

12.8 

22.5 

9.8 

17.2 

22.9 

4.4 

11.6 

20.9 

7.5 

17.8 
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APPENDIX A 

DERIVATION OF BETA ANGLE, ARGUMENT-OF-LATITUDE OF 
CULMINATION, AND ORBITAL ELEVATION ANGLE 

The unit angular momentum vector of the orbit (which is the orbit pole) illus- 
trated by Figure 3 ,  is given by 

h h  A h 

J = i (sin i sin S Z )  + j (-sin i cos S Z )  + k (cos i) . 
A unit vector to a star with right ascension a* and declination 6 ,  is 

h h h A 

R* = i (cos a, cos 6,) + j (sin a* cos 6,)  + k (sin 6,) . 

(A-1)  

(A-2) 

(See Figure 3 for an illustration of these vectors.) By definition, the 6-angle of the 
star is the angle between the vector to the star and the projection of that vector 
onto the orbit plane. This is also illustrated in Figure 3. Mathematically the 6-angle 
is calculated as 

A A 

R* J = cos (90-6* )  = sin 13" . (A- 3) 

Using equations (A-1)  and (A-2)  to construct the scalar product indicated in equation 
(A-3) gives the following result for the angle 

(A- 4) 
-1 6" = sin [cos i sin 6 ,  - cos 6, sin i sin (a,-n)] . 

By convention, the B-angle is positive if the star is on the same side of the orbit 
plane as J and negative otherwise. 

The culmination of a star is the place in the orbit plane where the star attains 
its maximum elevation angle above the local horizontal plane. 
orbit plane where the +arts position vector is projected onto the orbit plane by a 
great circle containing R* and i. This position in the orbit plane, measured from 
the ascending node of the orbit, is called the argument of latitude of culmination, 

This occurs in the 

uC * 
The argument of latitude of culmination can be calculated as follows: A point 

in the orbital plane 90° from orbital noon in the direction of orbit travel (which would 
be the terminator for the star on the surface of the Earth), which is called R*GT, 
is calculated as 

(A-5) 
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or 

* * 
I It is also necessary to have an expression for cos uc in order to determine uc without 

any ambiguity as to quadrant. 
- *  

i 
A unit vector to culmination, R is C ’  

A A 

A 

- - R* = 11 (-sin i cos ~2 sin 6 ,  - cos i sin a* cos 6,) 
R * ~ ~  cos B *  

A 

+ j (cos i cos a* cos 6 ,  - sin i sin n sin 6.) 

A 

+ k (sin f cos 6 ,  sin ( a * - n ) ) ]  / cos B *  ( A - 6 )  

A 

Let a unit vector to the ascending node of the orbit plane be denoted by P;  i .e. ,  

,. A A A 

P = i (cos 0 )  + j (sin n) + k(0) . (A- 7) 

can be calculated from SST The argument of latitude of the star-set terminator u* 

1 -sin i sin 6 ,  - cos i cos 6 ,  sin (a , -Q)  
P) = cos-1 [ cos $* 

-1 A 

( R * ~ ~  = cos SST U* 

The argument of latitude of culmination is 90° less than the argument of latitude of 
the star-set terminator; i .e. ,  

* 
- 900 . - * 

uC - %ST 

Therefore 

* * * 
SST sin u = sin (uSST - 900) = -cos u C 

Combining equations (A- 8)  and (A- 10) gives 

* 
C 

sin i sin 6 .+ + cos i cos 6 * sin (a*- Q) 

cos B *  sin u = 

(A- 9) 

(A- 10) 

(A- 11) 
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h h ,. 
6 A *  -' [J  ( J - R * )  - R* j>] * *  * *  ,. (J x R*) x J - RC = RGT x J = - 

cos 8" cos B *  

or 

*.A. 1 * h I - -  
cas B *  R C  - 

Then , 

* * *  * 

[J  (sin 13") - 

c y  P -  RC = COS U -  

R *I 

substituting equations (A- 7) and (A- 12) into equation (A- 13) gives 

* 
[sin B *  ( P o i )  - R*.P] cos B* cos uc = - 

but P - i  = 0,  therefore 

* 1 A h  1 I I [P*R*]  = cos 8* cos B* cos uc = [cos 6, cos (Ct,-L?)l 

From equations (A-11) and (A-15)  one then gets 

(A- 12) 

(A- 13) 

( A -  14) 

(A-15)  - 

rsin i sin 6, + cos i cos 6, sin ( a * - ~ ) 1  uC * \  . - 

The radius vector of the vehicle points to the local zenith which is 90° from 
the local horizontal plane. 
from the local horizontal is 

By definition, the orbital elevation angle, OEA, of a star 

OEA = 90° - cos-' (RV*I^l*) (A- 17) 

h 

The unit vector to the star R* is given by equation (A-2). 
vehicle is 

The unit vector to the 

* h 

Rv = i (cos L? cos u - sin L? cos i sin u)  

* * 

+ j (sin L? cos u t. cos L? cos i sin u) + k (sin i sin u) . (A- 18) 
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Rewriting (A-171,  we get 

-1 A A 

90° - OEA = COS (Rv*R*) 

I A A  

or cos (90° - OEA) = sin (OEA) = (Rv-R*) 

-1 A 

OEA = sin (Rv-R*) . 
I 

Substituting equations (A-  2)  and (A- 18) into equation (A-  19) gives 

(A-  19) 

OEA = sin-' {cos u [cos ti * cos (a,-n)l + sin u [cos ti * cos i sin (a,-n) 

~ + sin 6, sin i] } . (A-  20) 

One can substitute equation (A-15) for the coefficient of cos u into equation ( A - 2 0 ) ,  
and equation (A-11)  for the coefficient of sin u into equation (A-20)  to get , 

I 

* * 
OEA = sin-' {cos u [cos uc cos @*I + sin u [sin uc cos B*I  I , 

which simplifies to 

(A-21)  
~ * 

OEA = sin-' [cos B* cos (u,-u)l . 
* 

The angles B *  and uc calculated in equations ( A - 4 )  and (A-16)  change very slowly 
and can be considered constant for one orbit. Thus, equation (A-21)  can be used 
to calculate the orbital elevation angle of a given star from any point u in the orbit. 
u can be varied arbitrarily from Oo to 360° to obtain the elevation angle at any point 
in the orbit. The OEA will vary between the l i m i t s  +]go- B*I . 

Conversely, equation (A-21)  can be inverted to calculate the argument of 
latitude u required for a star to obtain a given OEA. 

* -  - - uc + cos 
* 
A ,L U (A-  22) 

The minus sign gives the argument of latitude of acquisition while the plus sign gives 
the argument of latitude of loss. 

or scientific constraint. 

OEA can be chosen arbitrarily between the 
, physically meaningful l i m i t s  of ?goo. In practice, it is chosen to satisfy some physical 

The observation time per orbit above a given OEA is 
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OT = 2" cos (A-23) 

6 in equation (A-23) is the orbital mean motion of the vehicle; expressed in degrees 
per minutes gives the OT in minutes; expressed in degrees per hour gives the OT 
in hours. 

The time from the ascending node that the star is acquired and lost is 

* * * * .  
= U L / U  TLOSS T~~~ = UA/U ; (A-24) 

The mission elapsed time (MET) of acquisition and loss is obtained by adding 
the time of the ascending node to the above times 

* 
M E T i C Q  =  MET^^^^ + T~~~ 

* i 

(A- 25) 

If a minimum OEA is known or given, it can be substituted directly into equa- 
tion (A-22) .  
orbiting vehicle to the star pass through the atmosphere at an altitude not lower than 
ALTA and the vehicle is at an altitude of ALTO, then the minimum OAE is calculated 
as 

If the constraint is expressed as having the line-of-sight from the 

> *  

RE + ALTA 
RE + ALTO OEA = cos-' ( (A- 26) 

This is illustrated in Figure A-1. 

less than ALTO. The elevation angle of the limb of the Earth is calculated from equation 
(A-26) by letting ALTA = 0. 
the Earth is at an elevation angle of -18.56. 

A negative sign is given to OEA when ALTA is 

From an altitude of 350 km, for example, the limb of 

If the viewing telescope has an FOV of Xo and the bottom edge of the FOV 
should not come closer than ALTA to the limb of the Earth, then the minimum OEA is 
that calculated by equation (A-26) and then adding (X/2)O to the result. 
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STAR * 

Figure A - 1 .  

\ 
i 

RE + ALTA 
RE + ALTO 

Illustration of minimum OEA for a given 
atmospheric constraint. 
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APPENDIX B 

CALCULATING THE RIGHT ASCENSION OF THE ASCENDING NODE 
OF THE ORBIT PLANE 

In order to maximize the usefulness of the equations presented in the body of 
this report, it is necessary for a user to be able to determine the right ascension of 
the ascending node of an orbit plane. 
doing this. 

This appendix gives an approximate way of 
It will  be accurate enough for feasibility analyses. 

The right ascension of the ascending node at any time after insertion at time 
to is given by 

R = Ro + n (t-to) 

where 6, the regression rate of the line of nodes, is given to first order by 

2 = - 3 / 2  J2 ( re /a( l -e  )) no cos i 

and where 

r = Earth's equatorial radius (6378160 meters) e 

a = semi-major axis of orbit 

e = eccentricity of orbit 

i = inclination of orbit 

- 3  J2 = 1.0827 x 10 

n = J p / a 3  (mean motion) 

1.1 = 3.986012 x 1014 m 3 / s 2  (gravitational constant) 

0 

r 

6, computed in MKS units, aomes out in units of radians/second. 
to convert it to degrees/day which is done by multiplying it by the conversion 
factor 

It is more useful 

86400 sec/day = 4950355.3 . 180° 
IT radiansC 
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In equation (B-1) ,  the quantity R ~ ,  the right ascension of the ascending node at 
orbital insertion, is given by 

Q o  = X o  + GST +[GSTMNO + L * DOY + we * GMT] 0 (B-3) 

where 

X o  = longitude of the ascending node at orbital insertion which is a function 
of orbital inclination, altitude and launch profile. 

GST = Greenwich siderial time or the hour angle of the vernal equinox 
measured from the Greenwich meridian. 

= GST at midnight on January 1 of any given year (-1000). G S T ~ ~ ~  

w = rotational rate of Earth (15O/hr). e 

GMT = Greenwich Mean Time of Day at orbital insertion 

- 
- GMTLaunch + METInsertion . 

The only quantity listed above that is not readily available from standard references 
is io. 

X o  can be calculated approximately from spherical trigonometry as illustrated in 
Figure B-1  and some assumptions on the launch profile. 
see that if orbital insertion occurred at the launch site the longitude of the ascending 
node would be given by 

From Figure B-1,  one can 

sin ( A N  - hLs)  = cot i tan 6 L s  

or 

tan i + sin - 
A N  - 'LS 

where ALS is the longitude of the 
launch site (28.O5). Both terms on the right side of the above equation for A N  are 
to be taken as negative (west of Greenwich). Insertion, however, does not occur at 
the launch site but at a downrange position in the orbit plane, Au/U * w e ,  added to 
it so that finally, 

, 

launch site (-80.O6) and 6 L s  is the latitude of the 
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Au varies with altitude, inclination, and launch profile, = 240°/hr and we = 15O/hr. 

On one of the early iterations of the SPACELAB 1,  as an example, we had 

i = 5 7 O  

6 L s  = 28.O5 

A L S  = 80.O6 

= 188.O77 i N  S U 

Au = uas - u0 = 154.O2 

LD = 12/3/80 DAY = 337 

LT = 18:OO GMT 

INS Time = 0.716 h r  

sin tjLS 
uo = sin-' [ sin i ] = 34.O67 

A. - [8O.O6 + 20.O65 + 154*02 240 .15] = -110.O9 

GST = [ l o o o  + 0.9856*337 + 15 * 18.7161 = 352.O9 

The actual value of Qo was 242.O685. 

The largest contributing error to A. will be due to the uncertainty nu in the 
downrange insertion distance from the launch site. This term is multiplied by the 
factor 15/240 = 0.0625 however, so even a loo error in the downrange position will  
contribute an error of only 0.O6 in the position of the node which will not be sig- 
nificant for feasibility calculations. 

Based on several previous flights, a downrange insertion value of Au = 155O 
seems to be a good average value although, on occasion, a flight may have a value of 
1 5 O  or 20° more than this, depending on the trajectory shaping. 

For the very specific case of the ASTRO-1 mission with i = 28.O5 and alt = 350 
km, w e  show in Figure B-2 the right ascension of the ascending node at orbital 
insertion for any given launch time of day for a launch on the first day of the month 
for any month of the year. 
a very good value for Q for any day of the year. 

With a little interpolation one can use this chart to get 
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1 ~ s  = LONGITUDE OF LAUNCH SITE 
1~ = LONGITUDE OF ASCENDING NODE 

no = RIGHT ASCENSION OF ASCENDING 
OF ORBIT PLANE 

NODE OF ORBIT PLANE 

Figure B-1. Illustration of the ascending node of the orbit plane relative to the 
meridian of Greenwich, England and to the vernal equinox. 
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